目前,咖啡碱的生物合成途径比较清晰,其中关键的酶也都已经基本解析,但是仍有一些合成通路的酶尚不明确。咖啡碱(1,3,7-三甲基黄嘌呤) 的生物合成是以黄嘌呤核苷(XR)为底物,通过三步甲基化、一步脱核苷酸化的核心途径来实现的。茶树中咖啡碱的生物合成途径主要是多个N-甲基转移酶参与甲基化而将黄嘌呤核苷转化为咖啡碱的过程,具体转化过程为:黄嘌呤核苷→7-甲基黄嘌呤核苷→7-甲基黄嘌呤→可可碱(3,7-二甲基黄嘌呤)→咖啡碱(图1),该途径也是其他含咖啡碱植物中咖啡碱的主要生物合成途径。一般所谓的咖啡碱合成酶(TCS),主要是催化最后两步的甲基化(从7-甲基黄嘌呤→3,7-二甲基黄嘌呤→1,3,7-三甲基黄嘌呤)。另外,咖啡碱的合成还有一条次要途径,通过7-甲基黄嘌呤→1,7-二甲基黄嘌呤→咖啡碱。
咖啡碱合成过程中的甲基供体是S-腺苷-L-甲硫氨酸(SAM),通过N-甲基转移酶类(NMTs)催化黄嘌呤三步甲基化,最终生物合成咖啡碱。这3种甲基化转移酶分别是黄嘌呤核苷N-甲基转移酶(7-NMT)、7-甲基黄嘌呤N-甲基转移酶(3-NMT)和3,7-甲基黄嘌呤转移酶(1-NMT),其中3-NMT 的活性最高,是7-NMT及1-NMT活性总和的10倍以上。由于3-NMT和1-NMT具有几乎相同的性质,人们把这两种酶看作为同一种酶,也就是目前已经解析的TCS。
TCS基因(CsCS1,GenBank: AB031280) 在茶树中被克隆之后,研究发现其合成酶基因存在突变。以可可茶为例,其咖啡碱合成酶(CpCS)由于个别氨基酸的突变失去了常规茶咖啡碱合成酶(TCS1)的正常功能,使可可碱(3,7-二甲基黄嘌呤)不能催化成为咖啡碱,从而导致可可碱的含量较高。茶树NMT的独立和快速的进化机制导致了TCS1具有丰富的等位变异。目前,已经从茶树中发现了6种TCS1的等位基因,其中TCS1a是主要基因,其他基因存在于一些野生种茶树里面,例如不含咖啡碱的红芽茶。也正是由于TCS1 序列变异多样,导致TCS1酶活性多样,从而形成了我国茶树资源中嘌呤生物碱具有不同的分布模式。Zhu等利用山茶属植物咖啡碱含量不同的特点,选择了Camellia crassicolumna 等低咖啡碱植物作为对照,通过转录组学等手段发现了咖啡碱降解为可可碱的途径。
次黄嘌呤核苷酸是腺嘌呤核苷酸、鸟嘌呤核苷酸及咖啡碱合成的前体物质,茶树中咖啡碱的合成可以分为核心途径和供体途径,其中合成黄嘌呤核苷有4 种途径,黄嘌呤核苷酸可以继续合成咖啡碱,次黄嘌呤核苷酸脱氢酶参与了其中3种供体途径。
次黄嘌呤核苷酸脱氢酶(IMPDH)和S-腺苷甲硫氨酸合成酶(SAM)也是咖啡碱合成过程中两个关键酶,IMPDH 基因在叶内表达量高于根和茎。茶树次黄嘌呤核苷酸脱氢酶催化次黄嘌呤核苷酸合成黄嘌呤核苷酸,其cDNA全长序列被克隆,命名为TIDH,对其在不同组织器官中的表达也有初步研究。研究发现,可以通过抑制次黄嘌呤核苷酸脱氢酶活性增加次黄嘌呤核苷酸的量来培育低咖啡碱茶树。
茶树新梢嫩叶中TCS表达量较高,与咖啡碱含量变化一致,同时检测到较强的一甲基转移酶活性,表明嫩叶中咖啡碱生物合成主要受到基因水平上的调控和底物水平控制。茶树咖啡碱分解代谢途径通常是通过7-N-脱甲基酶介导脱去7位甲基而成为茶碱,茶碱再脱甲基成3-甲基黄嘌呤和黄嘌呤,最后经嘌呤代谢途径分解成CO2、NH3和尿素。目前,咖啡碱在茶树中的末段的生物合成途径基本清晰,但是前端的某些关键酶的基因还不能确定。7-甲基黄嘌呤核苷合成酶是催化黄嘌呤核苷成为7-甲级黄嘌呤的关键酶,但是目前这个关键酶还未被确证,其基因也不明确;是否存在3-甲基黄嘌呤直接合成可可碱的途径也尚未确证。
2. 茶氨酸的生物合成
茶氨酸(Theanine)是茶叶中特有的一类非蛋白质氨基酸,化学名为5-N-乙基-γ-谷氨酰胺或γ-谷氨酰-L-乙胺。迄今为止,已经在很多山茶科植物中检出了茶氨酸,不过它在Camellia sinensis 和Camellia assamica 中含量较高。目前,一般认为茶树体内乙胺和谷氨酸在茶氨酸合成酶作用下生成茶氨酸。
茶氨酸是茶树主体氨基酸,其存在于除果实以外的茶树各个器官,嫩叶中含量最高,其次分别是根皮、吸收根、老叶和茎等。在茶树新梢萌发前,供给茶树的氨态氮主要以茶氨酸、谷氨酰胺和精氨酸为主,这些氮源主要贮藏在根部和叶部;随着茶树的萌发,这些化合物转移到新梢,尤以茶氨酸浓度最高。
茶氨酸合成代谢途径基因包括直接参与合成的茶氨酸合成酶基因和茶氨酸水解酶基因,以及控制主要前体物乙胺来源的丙氨酸脱羧酶基因等。茶氨酸合成酶(TS) 即L-谷氨酸-乙胺连接酶,是茶氨酸合成的关键酶,催化谷氨酸和乙胺合成茶氨酸。
研究表明,茶叶中的茶氨酸合成酶和谷氨酰胺合成酶(GS) 具有高度的基因同源性,TS1 基因与GS3 基因有99%相同,而TS2 基因与GS1 基因有97%相同,因此推测两个基因可能源于GS家族,因为氨基酸突变导致酶学功能产生差异,使得TS 具有催化谷氨酸转乙胺基合成茶氨酸功能,而普通植物中的GS 只有催化谷氨酸转氨基合成谷氨酰胺的能力。茶氨酸合成酶TS 在ATP存在的条件下,能以L-谷氨酸和乙胺为底物催化合成茶氨酸,而作为茶氨酸组成部分的乙胺则是茶树新梢儿茶素间苯三酚核的直接前体,茶氨酸代谢通路的水解产物乙胺还参与了儿茶素的生物合成。
茶氨酸合成酶(TS)是茶氨酸合成代谢的关键酶,在ATP、Mg2+、K+存在的条件下,茶籽苗匀浆能够催化谷氨酸和乙胺合成茶氨酸。目前,宛晓春课题组从茶树基因组中找到了5 条GS基因序列, 分别命名为CsTSI、CsGSII-1a、CsGSII-1b、CsGSII-1c 和CsGSII-2a。其中CsTSI 具备体外合成茶氨酸的能力,与较为古老的藻类、细菌中的I 型GS 同源性较高,因此分类为CsTSI。CsGSII-1a、CsGSII-1b、CsGSII-1c 和CSGSII-2a 均为II 型GS。转基因植物研究表明,CsTSI具有双功能酶特性,即可催化谷氨酸合成谷氨酰胺,又可合成茶氨酸,而其酶学特性切换主要受底物乙胺的调控。
TS1基因在茶树芽头和根部表达几乎相当,但是TS2 在茶树芽头的表达要高于根部。Liu 等人研究茶籽苗各部位茶氨酸合成酶基因的表达差异,结果表明TS1 在新梢中表达量高于其他部位,根部相对较低。Deng 等研究了咖啡碱和茶氨酸合成的特点,发现咖啡碱只在叶片和茎部合成,而茶氨酸在根部合成。
Cheng等认为乙胺是茶氨酸生物合成过程中的关键前体,因为茶氨酸合成所需要的谷氨酸在很多植物中都存在,但是乙胺主要存在于山茶科的植物中,尤其是在Camellia sinensis中。乙胺作为茶氨酸的合成前体物质,在茶树根部由丙氨酸脱羧酶将丙氨酸脱去羧基生成。最近,Bai 等从茶树中克隆了1 条新的丝氨酸脱羧酶(SDC)的基因,该基因具有很强的催化丙氨酸脱羧的作用,它在茶树根部的表达高于叶片,该基因被命名为丙氨酸脱羧酶(AlaDC)。谷氨酰胺-α-酮戊二酸氨基转移酶(GOGAT,又称谷氨酸合酶),能将GS催化生成的谷氨酰胺催化生成谷氨酸。此外,谷氨酸脱氢酶(GDH)催化α-酮戊二酸发生还原氨基化反应,生成谷氨酸。茶氨酸转运至叶部后在茶氨酸水解酶作用下降解为谷氨酸和乙胺。
茶氨酸合成酶需要K+和磷酸盐维持它的活性。在茶叶采摘后的前10 h,此水解酶活力增加,随后逐渐下降,而谷氨酰胺酶活力不断下降,采摘48h后几乎失去活性。秋冬增施含氮基肥、采前遮阴、控制日采摘时间、喷施含茶氨酸前体叶面肥等措施可以提高鲜叶氨基酸(茶氨酸)含量。Liu 等关注了茶叶采摘之后在不同温度和光照条件下(遮阴)茶氨酸含量变化以及相关基因的表达差异。高温条件下,茶氨酸的含量显著降低,通过关联分析发现GOGATs 在处理过程中变化较大,但是茶氨酸合成酶相关表达变化不大,加热条件下CsNADH-GOGAT 表达下调,且茶氨酸含量降低。CsFd-GOGAT (铁氧还原蛋白-谷氨酰胺谷氨酸合成酶)表达水平与茶氨酸含量呈现负相关。尽管以上两个酶基因不是茶氨酸合成的关键基因,但是也属于其前体物质谷氨酸的关键合成基因,因此也可以通过谷氨酸的合成来调控茶氨酸的含量。
一些研究还发现气候,如气温等因素也会影响茶氨酸的生物合成。高温条件下,尤其是夏秋茶中茶氨酸的含量显著低于春茶,其主要原因可能是高温导致GOGAT 等茶氨酸合成酶的活性增加,降低了茶氨酸前体的合成,从而降低茶氨酸含量。
随着茶叶中茶氨酸合成途径及相关基因研究的深入,已经有一些基因工程和发酵工程技术应用于茶氨酸的生物发酵。通过构建具有茶氨酸合成能力的基因工程菌来发酵生产茶氨酸是其体外生物合成的一条有效途径。(资料来源:中国茶叶)